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17 Abstract:  The  Tibetan  Plateau  (TP)  has  experienced  rapid  warming  in  recent  decades.  However,  

the  meteorological  stations  of  the  TP  are  scarce  and  mostly  located  at  the  eastern  and  southern  

parts  of  the  TP  where  the  elevation  is  relatively  low,  which  increases  the  uncertainty  of  regional  

and l ocal  climate  studies.  Recently,  the  remotely  sensed  land  surface  temperature  (LST)  has  been  

used  to  estimate  the  surface  air  temperature  (SAT).  However,  the  thermal  infrared  based  LST  is  

prone  to  cloud  contamination,  which  limits  the  availability  of  the  estimated  SAT.  This  study  

presents  a  novel  all  sky  model  based  on  the  rule-based  Cubist  regression  to  estimate  all  sky d aily  

average  SAT  using  LST,  incident  solar  radiation  (ISR),  top-of-atmosphere  (TOA)  albedo  and  

outgoing  longwave  radiation  (OLR).  The  model  is  trained  using  station  data  of  the  Chinese  

Meteorological  Administration  (CMA)  and  corresponding  satellite  products.  The  output  is  

evaluated  using  independent  station  data  with  the  bias  of  -0.07  °C  and  RMSE  of  1.87°C.  

Additionally,  the  25-fold  cross  validation  shows  a  stable  model  performance  (RMSE:  1.6-2.8  °C).  

Moreover,  the  all  sky  Cubist  model  increases  the  availability  of  the  estimated  SAT  by  nearly  

three  times.  We  used  the  all  sky  Cubist  model  to  estimate  the  daily  average  SAT  of  the  TP  for  

2002-2016  at  0.05°×0.05°.  We  compared  our  all  sky  Cubist  model  estimated  daily  average  SAT  

with  three  reanalysis  datasets  (i.e.,  GLDAS,  CLDAS,  and  CMFD).  Our  model  estimation  shows  

similar  spatial  and  temporal  dynamics  with  these  existing  data  but  outperforms  them  with  lower  

bias  and  RMSE  when  benchmarked  against  CMA  station  data.  The  estimated  SAT  data  could  be  

very  useful  for  regional  and  local  climate  studies  over  the  TP.  Although  the  model  is  developed  

for  the  TP,  the  framework  is  generic  and  may  be  extended  to  other  regions  with  proper  model  

training  using  local  data.  
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1. Introduction 

The Tibetan Plateau (TP) is the world’s highest plateau in central Asia with an average 

elevation higher than 4000 meters above sea level (ASL) (Figure 1(a)) (Yang et al., 2014). As 

the world’s “Third Pole”, it is the origins of major rivers in Asia and regulates regional and 

global weather patterns (Yao et al., 2018). Many previous studies reported that the Tibetan 

Plateau, similar with other high mountainous areas, has experienced more rapid surface 

temperature change comparing to many other parts of the world, especially after early 1950s 

(Duan and Xiao, 2015; Pepin et al., 2015; Rangwala and Miller, 2012; Yao et al., 2018). The 

reported warming exists for both mean, minimum, and maximum surface air temperatures (SAT), 

leading to the decreasing diurnal temperature range of the TP (Duan and Xiao, 2015; Li et al., 

2005; Liu et al., 2009; Liu and Chen, 2000; Yang and Ren, 2017). As a consequence of the SAT 

change, the TP has shown remarkable changes of its cryosphere, hydrological cycles, and 

ecosystems. For example, Shen et al. (2015a) reported that the snow cover of the TP has reduced 

by 5.7% during 1997-2012; Yang et al. (2014) demonstrated that the central TP experiences 

more convective precipitation and more surface runoff while the southern and eastern regions 

experience reduction in both precipitation and surface run off in recent decades; multiple studies 

observed that the vegetation activity shows strong response to surface temperature change over 

the TP (Cong et al., 2017; Shen et al., 2015b; Shen et al., 2016). 

---------- Insert Figure 1 here ----------

However, previous studies heavily rely on SAT data measured by unevenly distributed 

meteorological stations (Figure 1(a)). Figure 1(b) shows the elevation distribution of the CMA 

stations and the elevation distribution of the radar-based digital elevation model (DEM) of the 
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62 entire  TP.  Over  70%  of  the  CMA  stations  are  located  at  relatively  low  elevation  (<  4,000  meters  

ASL)  and  the  eastern  part  of  the  TP,  while  almost  no  operational  CMA  stations  are  placed  

beyond 5 ,000 m eters  ASL.  The  sparse  and b iased  station s amples  may  increase  the  uncertainty  of  

local  and  regional  climate  analysis  and  corresponding  impact  studies  (Pepin  et  al.,  2015;  Rao  et  

al.,  2018;  Yao  et  al.,  2018).  Alternatively,  previous  studies  also  use  several  spatially  complete  

SAT  datasets  which  are  produced  through  either  data  interpolation  or  data  assimilation,  such  as,  

Global  Land  Data  Assimilation  System  (GLDAS)  data,  Chinese  Meteorological  Forcing  Data  

(CMFD),  Chinese  Land  Data  Assimilation  System  (CLDAS),  and  Climate  Research  Unit  (CRU)  

high  resolution  climate  dataset.  These  datasets  provide  important  information  for  the  regions  

with  no  station  measurements.  However,  the  spatial  resolutions  of  these  datasets  (except  CLDAS)  

are  very  coarse  (0.25°  ~  0.5°),  which  may  cause  large  uncertainty  in  applications,  especially  for  

the  region  of  the  TP  with  such  complex  terrain  (An  et  al.,  2018).  Additionally,  these  datasets,  

developed  at  global  or  national  scales,  have  not  been  comprehensively  validated  for  the  TP  and  

usually  have  large  uncertainty  associated  with  the  methods  or  land  surface  models  used  during  

their  production.  To  address  the  spatial  resolution  issue  for  the  TP,  Ding  et  al.  (2018a)  developed  

a  downscaling  framework  using  DEM  to  produce  high  resolution  (0.01°×0.01°)  SAT  dataset  of  

the  TP  (Ding e t  al.,  2018b).       

Meanwhile,  remotely  sensed  land  surface  temperature  (LST)  has  been  widely  used  to  

study  regional  and  global  climate  change  due  to  its  strong  correlation  with  SAT  and  its  global  

coverage  from  multiple  satellite  missions  (Good  et  al.,  2017;  Pepin  et  al.,  2016).  Using  monthly  

LST  data  of  Moderate  Resolution  Imaging  Spectroradiometer  (MODIS),  Qin  et  al.  (2009)  

reported  that  the  warming  rate  of  the  TP  has  shown  notable  dependency  on  the  elevation  during  

2000-2006.  Despite  the  strong  correlation  between  LST  and  SAT,  they  are  two  distinct  variables  
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with  different  physical  definitions.  To  overcome  this  limitation,  researchers  have  developed  

various  methods  to  estimate  SAT  using  LST  of  various  sensors,  such  as,  MODIS  (Huang  et  al.,  

2017;  Lu  et  al.,  2018;  Zhang  et  al.,  2016),  Spinning  Enhanced  Visible  and  Infrared  Imager  

(SEVIRI)  (Good,  2015),  and  Advanced  Very  High  Resolution  Radiometer  (AVHRR)  (Prince  et  

al.,  1998).  Most  of  these  methods  are  based  on  linear  regression  using  LST  and  other  auxiliary  

input,  such  as,  land  cover,  surface  roughness,  day  length,  and  evapotranspiration  (Good,  2015;  

Huang  et  al.,  2017;  Meyer  et  al.,  2016;  Noi  et  al.,  2017;  Zhang  et  al.,  2016).  Recently,  studies  

have  also  explored  different  machine  learning  (ML)  models  (e.g.,  support  vector  machine,  

artificial  neural  network,  random  forest,  Cubist  regression,  etc.)  to  estimate  SAT  using  LST  

(Meyer  et  al.,  2016;  Noi  et  al.,  2017;  Zhang  et  al.,  2016).  Generally,  the  ML  models  perform  

better  than  linear  regression  models  because  ML  models  can  better  capture  the  complex  

relationship  between  LST  and  SAT.  Besides  ML  models,  spatiotemporal  interpolation  methods,  

such a s,  geographically  weighted r egression,  hierarchical  Bayesian  model,  and  kriging r egression,  

have  also  been  used  to  generate  high  resolution  SAT  using  LST  and  other  auxiliary i nputs  (Chen  

et  al.,  2014;  Li  et  al.,  2018;  Lu e t  al.,  2018).    

Despite  the  recent  progress,  the  LST-based  SAT  estimation  still  suffers  a  major  limitation  

caused  by  the  cloud  contamination.  Since  most  of  current  LST  data  are  derived  from  thermal  

infrared  data,  the  LST  data  are  unavailable  when  cloud  exists  during  satellite  overpassing  time.  

The  cloud  contamination  has  strong  impacts  on  the  availability  and  the  quality  of  the  SAT  

estimated  using  existing  methods.  Noi  et  al.  (2017)  reported  that  using  four  instantaneous  

MODIS  LSTs  (i.e.,  daytime  and  nighttime  LSTs  of  both  Terra  MODIS  and  Aqua  MODIS  

products)  can  accurately  estimate  daily  average  SAT  with  the  root-mean-squared-error  (RMSE)  

less  than  2  K.  However,  the  RMSE  of  the  estimated  SAT  increases  (larger  than  3  K)  when  cloud  

86 

87 

88 

89 

91 

92 

93 

94 

96 

97 

98 

99 

101 

102 

103 

104 

106 

107 

5 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110

115

120

125

130

108 contamination  occurs  (Noi  et  al.,  2017).  To  account  for  cloud  contamination,  Zhang  et  al.  

(2016)’s  framework  estimate  the  daily  average  SAT  by  dynamically  integrating  available  

MODIS  LSTs  based  on  their  quality.  Although  Zhang  el  al.  (2016)’s  method  can  increase  the  

availability  of  the  estimated  SAT,  it  still  requires  at  least  one  high  quality  clear  sky  LST  and  the  

estimated  SAT  has  different  levels  of  uncertainty  due  to  the  changing  availability  and  quality  of  

MODIS  LSTs  (ranging  from  1.5  to  3.5  K)  (Zhang  et  al.,  2016).  To  address  the  cloud  

contamination  issue,  Zhu  et  al.  (2017)  developed  a  parameterization  scheme  to  estimate  all  sky  

instantaneous  daytime  SAT  using  MODIS  atmospheric  profile  products  (i.e.,  MOD06_L2,  

MOD07_L2).  The  parameterization  scheme  is  developed  based  on  clear  sky  near  surface  air  

temperature,  surface  pressure,  and l and  surface  temperature   average  from M ODIS  products  (Zhu  

et  al.,  2017).  For  cloudy  sky  conditions,  Zhu  et  al.  (2017)  extends  the  linear  regression  between  

clear  sky  SAT  and  LST  to  the  cloud  sky  MODIS  data.  However,  the  relationship  between  SAT  

and  LST  can  be  quite  different  between  clear  sky  and  cloudy  sky  conditions,  hence  leading  to  

large  data  uncertainty  for  cloudy  sky  condition  using  Zhu  et  al.  (2017)’s  method.  Zhang  et  al.  

(2008)  reported  that  the  annual  average  cloud  coverage  of  the  TP  ranges  from  40%  - 60%  during  

1971-2004.  The  frequent  cloud  contamination  can  have  serious  implications  on  the  quality  and  

availability  of  the  estimated S AT  using  existing  methods.  

The  main  objective  of  this  study  is  to  develop  a  method  that  can  produce  daily  average  

SAT  of  the  TP  with  relatively  high  resolution  (i.e.,  0.05°×0.05°)  that  are  not  or  less  prone  to  

frequent  cloud  contamination.  Different  from  existing  studies,  we  propose  a  ML  model  to  

estimate  daily  average  SAT  using  all  available  LSTs  and  remotely  sensed  radiation  variables  at  

both  the  surface  and  top-of-atmosphere  (TOA)  levels.  These  radiation  variables  are  available  for  

both  clear  sky a nd  cloudy s ky  conditions  and  contain  important  information  about  surface  energy  
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131 exchange.  Theoretically,  the  surface  energy  exchange  regulates  SAT  and it s  difference  with  LST.  

Thus,  including  these  radiation  variables  may  help  capturing  the  physical  process  of  surface  heat  

exchange  thus  improving  the  model  performance.  In  this  study,  we  choose  the  rule-based  Cubist  

regressing  (hereafter  referred a s  Cubist)  as  our  base  model  since  previous  studies  all  reported  that  

the  Cubist  has  the  best  performance  on  estimating  SAT  using  LSTs  over  different  regions  

including  the  TP  (Noi  et  al.,  2017;  Zhang  et  al.,  2016).  To  robustly  estimate  the  all  sky  SAT,  we  

also  compare  two  different  strategies  using  1)  one  generic  model  for  both  clear  sky  and  cloudy  

sky  conditions  or  2)  two  separate  models  for  clear  sky  and  cloudy  sky  conditions  separately.  To  

the  best  of  our  knowledge,  this  study  is  the  first  study u sing  machine  learning m odels  to  estimate  

daily  average  SAT  under  all  sky  condition  with  remotely  sensed  products.  The  estimated  all  sky  

SAT  dataset  can  be  very  important  for  climate  analysis  and  relevant  impact  studies  for  the  TP.  

The  structure  of  this  manuscript  is  organized  as  follow:  section  2  describes  the  data  and  

necessary  data  processing  used  in  this  study;  section  3  summarizes  the  overall  research  method,  

Cubist  regression  model,  and  the  evaluation  strategies  of  this  study;  model  training  and  

validation  results  are  reported  in  section  4,  while  section  5  describe  the  results  of  cross  

comparison  with  existing  datasets;  section  6  discusses  the  advantages  and  limitations  of  this  

study  while  the  conclusion is   presented i n s ection  7.  
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148 2.  Data  

149 The  data  used  in  this  study  include  1)  the  station  measured  SAT  for  model  training  and  

evaluation,  2)  the  SAT  of  various  reanalysis/forcing  datasets  for  cross  comparison,  and  3)  the  

remotely  sensed  variables  as  the  model  inputs  (i.e.,  elevation,  LST,  surface  variables  and  

radiation  variables).  Table  1  presents  the  basic  summary  of  the  data  used  in  this  study.  Each  

category  of  the  data  (i.e.,  station  data,  remotely  sensed  data,  and  reanalysis/forcing  data)  is  
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154 further  described  in  the  corresponding  subsections  with  the  details  that  are  meaningful  to  this  

study.  If  readers  are  interested  in  more  details,  they  should  refer  to  the  relevant  references  listed  

in T able  1.  

---------- Insert  Table  1 h ere  ---------- 

2.1 S tation  data  

In  this  study,  the  station  measured  SAT  data  are  used  for  both  model  training  and  

evaluation  (Table  1(a)).  The  main  source  of  the  daily  average  SAT  used  in  this  study  is  135  

meteorological  stations  of  the  TP  managed  by  the  Chinese  Meteorological  Administration  

(CMA).  The  data  between  2002  and  2015  were  downloaded  from  the  CMA’s  National  

Meteorological  Information  Center  (NMIC)  (http://data.cma.cn).  Additionally,  we  also  collected  

daily  average  SAT  of  10  individual  experiment  stations  managed  by  different  research  groups  of  

the  Institute  of  Tibetan  Plateau  Research  (ITP)  to  independently  evaluate  the  Cubist  model  

performance.  Different  from  CMA  stations,  ITP  stations  have  various  length  of  data  records  

since  most  of  these  stations  are  not  operational  meteorological  stations.  Moreover,  three  out  of  

10  ITP  stations  are  located  in  regions  with  elevation  above  5,000  meters  ASL,  which  are  used  to  

evaluate  Cubist  model  performance  over  high  elevation  regions.  The  location  of  the  CMA  

stations  and I TP  stations  is  presented in   Figure  1(a).  

2.2 R emotely s ensed  data  

The  remotely  sensed  data  used  in  this  study  are  listed  in  Table  1(b).  The  Global  Multi-

resolution  Terrain  Elevation  Data  2010  (GMTED2010)  was  downloaded  from  the  United  States  

Geological  Survey  (USGS,  https://topotools.cr.usgs.gov/gmted_viewer/).  It  is  produced  by  

combining  multiple  high  quality  DEM  datasets  from  various  international  institutions.  The  
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176 GMTED2010  data,  with  an  original  resolution  of  7.5  arc-seconds,  were  resampled  to  0.05°×0.05°  

by  simple  averaging  to  match w ith t he  resolution o f  other  remotely  sensed d ata.  

In  this  study,  we  use  MODIS  daily  composite  LST  data  in  a  0.05°×0.05°  grid  (i.e.,  

MOD11C1  and  MYD11C1),  which  were  downloaded  from  NASA  Land  Process  Distributed  

Active  Archive  Center  (i.e.,  LP  DAAC,  https://lpdaac.usgs.gov/)  (Wan  et  al.,  2015a,  b).  These  

products  are  generated  by  aggregating  MODIS  Level  2  LST  products  (i.e.,  MOD11_L2  and  

MYD11_L2)  with  strict  quality  control.  Each  product  (MOD11C1 a nd  MYD11C1)  contains  both  

daytime  and  nighttime  LSTs  from  different  satellite  viewing  time.  Previous  studies  have  proven  

that  combining  all  four  LST  values  can  improve  the  accuracy  of  the  estimated  SAT  (Noi  et  al.,  

2017;  Zhang  et  al.,  2016).  

In  this  study,  we  also  use  three  remotely  sensed  radiation  products,  including  Global  

LAnd  Surface  Satellite  (GLASS)  incident  solar  radiation  (ISR)  at  the  surface,  University  of  

Maryland’s  (UMD)  TOA  outgoing  longwave  radiation  (OLR),  and  Beijing  Normal  University’s  

(BNU)  TOA  albedo  (TOAALB).  The  GLASS  ISR  data  are  derived f rom  multiple  satellites’  data,  

including  AVHRR,  MODIS  and  available  geostationary  satellites’  data  (Zhang  et  al.,  2014).  The  

OLR  data  are  produced  using  AVHRR  and  MODIS  thermal  infrared  data  based  on  linear  

regression  models  derived  from  radiative  transfer  model  (RTM)  simulations  (Zhou  et  al.,  

submitted).  The  TOAALB  data  are  also  produced  using  AVHRR  and  MODIS  data  with  linear  

models  derived  from  RTM  simulations  (Song  et  al.,  2018).  All  radiation  products  are  daily  data  

with th e  same  spatial  resolution o f  0.05°×0.05°  for  all  sky  conditions.  

The  surface  variables  used  in  this  study  include  MODIS  surface  albedo  (SFCALB),  

Normalized  Difference  Vegetation  Index  (NDVI)  and  Normalized  Difference  Snow  Index  
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198 (NDSI).  The  MODIS  surface  albedo  product  (MCD43C1)  provides  daily  surface  albedo  in  a  

0.05°×0.05°   grid  (Schaaf  and  Wang,  2015).  Although  MCD43C1  is  a  daily  product,  it  estimates  

daily  albedo  using  MODIS  data  within  a  16-day  moving  window.  Therefore,  it  might  not  reflect  

the  real  surface  information  of  a  specific  day  especially  over  regions  with  rapid  surface  dynamics.  

The  MODIS  NDVI  data  include  MOD13C1  and  MYD13C1,  which  are  aggregated  16-day  

products  in  the  same  0.05°×0.05°  grid  derived  using  Terra  and  Aqua  MODIS  data  respectively  

(Didan,  2015a,  b).  Both  MCD43C1  and  MOD13C1/MYD13C1  data  were  downloaded  from  

NASA  LP  DAAC.  Furthermore,  the  daily  MODIS  NDSI  data  (i.e.,  MOD10C1  and  MYD10C1)  

were  acquired  from  National  Snow  and  Ice  Data  Center  (NSIDC,  https://nsidc.org/)  (Hall  and  

Riggs,  2015a,  b)  in th e  same  0.05°×0.05°  grid.  

Since  LST  has  strong  correlation  with  SAT,  we  use  the  all  available  LSTs  (i.e.,  four  

instantaneous  MODIS)  to  better  capture  the  diurnal  cycle  of  the  surface  temperature.  Because  the  

difference  between  LST  and  SAT  is  related  with  surface  heat  exchange,  we  propose  to  include  

radiation  variables  (i.e.,  ISR,  OLR,  and  TOAALB)  to  reflect  the  crucial  process  that  may  

improve  the  accuracy  of  estimated  SAT.  Since  surface  conditions  can  also  affect  the  difference  

between  LST  and  SAT,  the  surface  variables  are  also  used  as  candidate  inputs  for  the  model.  

However,  the  radiation  variables  are  available  for  all  sky  conditions,  while  the  surface  variables  

are  only  available  for  clear  sky  conditions.  Thus,  including  radiation  variables  would  likely  

increase  the  data  availability  of  the  estimated  SAT.     

2.3 R eanalysis/forcing  data  

In  this  study,   the  SAT  data  of  three  reanalysis/meteorological  forcing  datasets   (see  

Table  1(a))  are  also u sed  to a ssess  the  performance  of  the  Cubist  model  estimated  SAT  of  the  TP.  
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240

NASA  GLDAS  produces  reanalysis  datasets  regularly  using  multiple  land  surface  models  at  

different  spatial  resolutions  (Rodell  et  al.,  2004).  We  downloaded  the  SAT  data  from  the  

GLDAS  NOAH  reanalysis  dataset  via  NASA’s  Goddard  Earth  Sciences  Data  and  Information  

Services  Center  (GES  DISC).  The  spatial  and  temporal  resolution  of  this  dataset  is  0.25°×0.25°  

and  3-hourly  respectively  with  the  complete  coverage  over  the  global  land  area  except  the  

Antarctic  since  2000.  In  addition,  we  also  downloaded  the  SAT  data  of  the  CMA’s  CLDAS  

reanalysis  data.  The  CLDAS  data  are  produced  hourly  in  a  0.0625°×0.0625°  grid  since  2008  (Shi  

et  al.,  2011;  Xie  et  al.,  2011).  Lastly,  the  CMFD  SAT  data  were  downloaded  from  the  ITP’s  

Third  Pole  Environment  Database  (TPE).  The  CMFD  dataset  contains  3-hourly  SAT  in  a  

0.1°×0.1°  grid  from  1979  to  2016,  which  is  generated  by  dynamically  adjusting  the  bias  of  

GLDAS  reanalysis  SAT  data  to  match  CMA  station  observations  via  spline  interpolation  (Chen  

et  al.,  2011;  Yang  et  al.,  2010).     

2.4 D ata p rocessing  

As  mentioned  earlier,  the  GMTED2010  elevation  data  were  aggregated  to  the  0.05°×0.05°  

grid  which  is  the  same  with  all  other  remotely  sensed  datasets.  To  train  and  evaluate  the  model,  

we  extracted  all  remotely  sensed  data  for  all  CMA  and  ITP  stations  aforementioned  (Table  1(a))  

via  nearest  neighborhood  method.  These  extracted  remotely  sensed  data  were  then  paired  with  

the  corresponding  station  SAT  data.  The  station-satellite  data  pairs  were  labeled  as  either  clear  

sky  or  cloudy  sky  observations  based  on  the  quality  flags  of  the  satellite  data.  Considering  

different  satellite  data  may  have  different  cloud  masks  in  their  quality  flags,  we  only  marked  the  

data  as  clear  sky  observations  when a ll  satellite  data’  quality  flags  were  cloud f ree;  otherwise,  the  

data  were  labeled a s  cloudy  observations.   
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242 Since  MODIS  LSTs  are  only  available  under  the  cloud  free  condition,  the  missing  values  

were  replaced  using  a  temporal  moving  window  (i.e.,  ±  five  days)  method.  When  there  is  at  least  

one  clear  sky  LST  within  this  11-day  time  period,  the  clear  sky  LST  value  which  is  temporally  

closest  to  the  target  date  is  used  to  replace  the  missing  value.  The  purpose  of  this  step  is  not  to  

accurately  predict  LST  under  the  cloudy  conditions,  but  rather  to  provide  a  first  guess  of  LST  

that  can  be  used  by  the  Cubist  model  to  estimate  SAT.  This  step  could  be  replaced  by  more  

complex  spatio-temporal  gap  filling  of  LST  data,  but  it  is  out  of  the  scope  of  this  study.  The  

sensitivity  of  the  data  availability  and  model  performance  on  the  moving  window  size  will  be  

discussed la ter.   

To  generate  daily  NDVI  for  each  grid,  16-day  MODIS  NDVI  data  (i.e.,  MOD13C1  and  

MYD13C1)  were  firstly  merged  into  one  NDVI  time  series  with  corresponding  date  information  

for  each  grid.  The  merged  NDVI  time  series  were  then  filtered  using S avitzkey-Golay  method  to  

further  remove  possible  cloud  contamination  (Chen  et  al.,  2004).  The  filtering  process  is  to  

remove  the  suspiciously  low  NDVI  values  caused  by  unfiltered  cloud  to  increase  the  confidence  

of  clear  sky  observations.  Finally,  the  filtered  time  series  were  interpolated  into  daily  time  series  

based  on  the  double  sigmoid  model.  For  all  reanalysis  and  meteorological  forcing  datasets,  we  

aggregated  their  sub-daily  SAT  values  to  daily  average  SAT  by  averaging  all  estimations  within  

the  same  day  for  each  grid b ut  leave  them  as  their  native  spatial  resolutions.     
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260 3.  Method  

261 The  overall  design  of  this  study  is  presented  in  Figure  2.   First,  all  station-satellite  data  

pairs  were  extracted  and  processed  as  described  in  section  2  for  model  training  and  evaluation.  

Only  part  of  the  CMA  station-satellite  data  (2004-2013)  were  used  for  model  training,  while  the  
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264 rest  of  the  CMA  station-satellite  data  and  the  ITP  station-satellite  data  were  kept  for  independent  

model  evaluation.  The  Cubist  model  was  trained  using  the  leave-one-station-out  (LOSO)  strategy  

to  determine  the  parameters  of  the  final  model.  We  use  LOSO  to  reduce  the  risk  of  overfitting  by  

mimicking th e  process  of  estimating S AT  for  unknown  regions  with  no  station  data  (Meyer  et  al.,  

2016).  After  the  model  parameters  were  determined  using  LOSO,  we  compared  two  different  

modeling  strategies  to  estimate  daily  average  SAT  under  all  sky  conditions  (i.e.,  a  universal  all  

sky  model  v.s.  two s eparate  models  for  clear  and  cloudy  sky  separately).  The  model  strategy  with  

the  best  accuracy  evaluated  using  station  data  was  chosen  as  the  final  model.  Lastly,  the  final  

model  was  evaluated  by  comparing  with  independent  station  data,  the  25-fold  cross  validation,  

and  cross  comparing  with  the  reanalysis/forcing  data.  The  basis  of  the  Cubist  model  and  the  

model  training/evaluation m ethods  are  further  descripted i n t he  following  subsections.   

---------- Insert  Figure  2.  here  ---------- 

3.1 T he  Cubist  model  

The  Cubist  model  is  a  rule-based  regression  method  developed  by  (Quinlan,  1993a,  

1993b,  1992).  The  Cubist  model  does  not  give  one  final  model  like  other  machine  learning  

methods,  but  it  generates  a  set  of  rules  and  multi-variate  predictive  models  associated  with  the  

rules  based  on  the  independent  variables  used.  Once  the  rules  and  rule-associated  models  are  

determined,  a  specific  set  of  independent  variables  will  correspond  to  predictive  models  based  on  

rules  that  best  suits  this  set  of  independent  variables.  It  is  originally  developed  as  a  commercial  

software  with  limited  documentation  comparing  to  other  popular  machine  learning  methods.  It  

has  been  adapted  by  researchers  using  open  source  statistical  language  R  and  become  a  popular  

model  in  different  disciplines  (Kuhn  et  al.,  2018;  Kuhn  and  Johnson,  2013).  Despite  the  lack  of  
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286 documentation,  the  Cubist  model  is  summarized  herein  based  on  existing  research  and  

documentations.   

The  Cubist  model  originates  from  the  M5  model  tree(Quinlan,  1992),  which  is  an  

improved  version  of  the  simple  decision t ree  model.  M5 f irstly  develops  a  full  tree  by  recursively  

partitioning  all  samples  into  different  nodes,  which  is  called  tree  growing  process.  After  the  tree  

is  produced,  a  multiple  linear  regression  model  is  fitted  for  each  node.  However,  some  nodes  

might  have  large  model  errors  due  to  insufficient  samples.  Then,  the  M5  creates  a  smaller  set  of  

generalized  regression  models  considering  the  training  error,  the  numbers  of  sample  and  the  

goodness-of-fit  for  each  node,  which  is  called  tree  pruning  process.  After  the  pruning  process,  

the  M5  creates  a  set  of  rules  and  corresponding  multi-variate  linear  regression  models  (Figure  3).  

Specifically,  a  rule  is  constructed  using  one  or  multiple  input  variables  (i.e.,  variables  listed  in  

Table  1(b)).  For  instance,  a  rule  may  be  set  as  “elevation  >  3500  meters  and  OLR  <  87  W/m2”,  

which  creates  a  subset  of  data  with  the  elevation  higher  than  3500  meters  ASL  and  OLR  lower  

than  87  W/m2 .  Although  the  original  tree  partitioning  is  recursive,  final  rule  sets  after  pruning  

may  be  overlapping,  which  means  a  sample  may  be  assigned  into  multiple  subsets  based  on  

different  rules.  In  these  cases,  predictions  from  different  subsets  will  be  averaged  to  generate  the  

merged p rediction.   

---------- Insert  Figure  3 h ere  ---------- 

Next,  the  Cubist  model  utilize  a  boosting-like  technique  to  enhance  its  prediction  

performance  with  a  process  named  committee  prediction  (Kuhn  and  Johnson,  2013).  Since  the  

M5  model  tree  does  not  produce  perfect  prediction,  the  Cubist  model  uses  the  model  error  of  the  

initial  model  to  adjust  the  original  dependent  variable  (i.e.,  SAT  in  this  study)  and  creates  a  new  
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308 M5  model  tree  using  same  inputs  and  processes.  This  process  repeats  multiple  times  which  is  

predefined  to  create  the  final  model  and  each  individual  M5  model  is  considered  a  committee  

(Figure  4).  The  final  prediction  of  the  Cubist  model  is  calculated  by  averaging  corresponding  

predictions  of  each c ommittee.  

---------- Insert  Figure  4 h ere  ---------- 

3.2 M odel  training a nd  validation  

 To  build  and  evaluate  the  proposed  model,  the  station-satellite  data  pairs  were  separated  

into  two  sets:  1)  the  training s et  and  2)  the  validation  set.  The  training  set  contains  CMA  station-

satellite  data  pairs  from  2004  to  2013,  while  the  validation  set  includes  all  ITP  station-satellite  

data  pairs  and  the  ones  of  CMA   of  2002,  2003,  2014,  and  2015.  As  mentioned  earlier,  we  

compare  two  different  strategies  to  estimate  SAT  of  all  sky c onditions  (strategy  I:  a  universal  all  

sky  model;  strategy  II:  two  models  for  clear/cloudy  sky  conditions  separately).  Table  2  lists  all  

candidate  models  for  both  strategies  using  different  combinations  of  variables  listed  in  Table  

1(b),  including,  elevation,  LSTs,  radiation  variables,  and  surface  variables.  Since  surface  

variables  are  only  available  for  clear  sky  conditions,  only  Strategy  II’s  clear  sky  models  include  

them  (i.e.,  NDVI,  NDSI,  and  SFCALB)  as  model  inputs.  In  all  models  listed  in  Table  2,  we  use  

all  four  instantaneous  MODSI  LST  (or  gap-filled  LST)  within  the  same  day  as  part  of  the  model  

input.  This  is  motivated  by  the  assumption  that  using   four  instantaneous  LST  values  may  better  

capture  the  diurnal  cycle  of  surface  temperature  change  (Zhang  et  al.,  2016).   

---------- Insert  Table  2 h ere  ---------- 

 In  the  Cubist  model,  two  parameters  need  to  be  determined  through  training,  i.e.,  the  

number  of  committees  and  the  number  of  neighbors.  During  the  training  process,  we  used  the  
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350

LOSO  strategy  to  select  model  parameters  to  avoid  the  overfitting  issue  as  mentioned  earlier  

(Meyer  et  al.,  2016).  Firstly,  the  training  data  were  grouped  by  stations.  For  each  iteration,  a  

series  of  Cubist  models  were  fitted  using  different  combinations  of  model  parameters  using  data  

of  all  stations  except  one  which  was  randomly  chosen.  Then,  the  models  were  evaluated  using  

the  data  of  the  left-out  station.  After  each  station  has  been  used  as  the  left-out  station  to  evaluate  

different  model  parameters,  the  final  model  parameters  were  selected  based  on  the  model  

performance  across  all  iterations.  

 To  evaluate  the  final  Cubist  model,  we  first  used  the  validation  dataset  of  CMA  stations  

of  the  year  2002,  2003,  2014 a nd 2 015 t o a ssess  the  model  performance  when i t  is  applied to d  ata  

of  different  years.  Additionally,  the  model  was  also  evaluated  using  independent  data  of  10  ITP  

stations.  Furthermore,  we  carried  out  a  25-fold  cross  validation  experiment  to  examine  the  

robustness  of  our  model.  In  this  experiment,  all  CMA  station-satellite  data  pairs  were  randomly  

divided  into  25  folds  by  station  ID.  During  each  iteration,  a  Cubist  model  was  fitted  using  24  

folds  of  data  with  the  same  parameters  previously  determined  by  the  LOSO.  This  model  was  

then  evaluated  using  the  left-out  fold  of  data.  This  process  was  repeated  25  times  until  all  25  

folds  of  data  have  been  used  to  independently  evaluate  a  Cubist  model.  This  cross  validation  

process  is  used t o e xamine  the  sensitivity  of  the  Cubist  model  on t he  training  datasets.   

 Lastly,  we  applied  the  final  Cubist  model  to  the  entire  TP  for  the  year  of  2014.  The  

estimated  SAT  of  the  TP  was  cross  compared  with  three  reanalysis/forcing  datasets  listed  in  

Table  1(a).  The  main  purpose  of  the  cross  comparison  is  to  evaluate  the  spatial  and  temporal  (i.e.,  

seasonal)  pattern  of  the  estimated  SAT.  Additionally,  we  also  compared  the  accuracy  of  our  

Cubist  estimation  and  the  existing  datasets  using  CMA  station  data  as  the  reference  since  all  

datasets  have  their  own u ncertainty.   
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4. Evaluation of Cubist Model Performance 

4.1 Model strategy comparison 

The statistics of all candidate models listed in Table 2 are presented in Table 3. For clear 

sky models, the full model (i.e., CLR-5) has the best performance with the lowest RMSE and the 

highest R2. The clear sky model without surface variables (i.e., CLR-4) also achieves comparable 

performance with the full model (CLR-5). However, when LSTs are replaced by TOA radiations 

(i.e., CLR-0 v.s. CLR-1, CLR-2 v.s. CLR-3), the performance of the models without LSTs are 

worse than the models with LSTs. The clear sky models indicate that LSTs have strong impacts 

on the Cubist model performance while radiation variables can be good supplemental variables 

to improve the model performance. Figure 5 demonstrates the density scatter plots of all Cubist 

models for the estimated daily average SATs against the CMA station measurements. 

-------- Insert Table 3 here --------

For cloudy sky models, the model with the temporally gap-filled LSTs and radiation 

variables (i.e., CLD-4) has the best performance with lowest RMSE. However, the model 

performance deteriorates when either gap-filled LSTs or radiation variables are dropped out from 

the model (i.e., CLD-0, CLD-1). Nonetheless, the model with only gap-filled LSTs (CLD-0) still 

outperforms the model with only radiation variables (CLD-1), which is similar with clear sky 

models. Moreover, the best cloudy sky model (CLD-4) performs slightly worse than the 

corresponding clear sky model (CLR-4) which may be caused by the uncertainty of gap-filled 

LSTs. 

-------- Insert Figure 5 here --------
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374 The  best  all  sky  model  is  the  one  with b oth  gap-filled  LSTs  and r adiation v ariables  (ALL-

4),  followed  by  the  model  with  only  gap-filled  LSTs  (ALL-0)  and  the  model  with  only  radiation  

variables  (ALL-1).  Moreover,  the  best  all  sky  model  (ALL-4)  has  better  overall  performance  

than  the  best  cloudy-sky  model  (CLD-4)  but  underperforms  the  best  clear  sky  model  (CLR-5).  

However,  the  all  sky  model,  ALL-4,  can  estimate  daily  average  SAT  for  much  more  

observations  instead  of  the  clear  sky  only  model  (CLR-5)  (i.e.,  number  of  data  points:  371,395  

v.s.  102,457)  with  comparable  overall  accuracy.  In  practice,  this  advantage  can  largely  increase  

the  data  availability  without  notably  sacrificing  the  data  quality.    

Table  4  summarizes  the  validation  results  for  all  12  Cubist  models  using  temporally  

independent  CMA  station  data  (of  the  year  2002,  2003,  2014,  and  2015).  For  all  sky  models,  we  

further  calculated  the  statistics  for  clear  sky  and  cloudy  sky  observations  separately  to  directly  

compare  with  the  results  of  clear/cloudy  sky  models.  For  clear  sky  condition,  all  models  with  

LSTs  as  inputs  show  comparable  performance  with  each  other  but  outperforms  the  models  

without  LSTs.  This  further  confirms  that  LSTs  have  major  contribution  to  accurately  estimate  

daily  average  SAT.  The  best  model  is  still  the  full  model  with  all  variables  as  inputs  (CLR-5).  

For  cloudy  and  all  sky  models,  the  models  with  both  gap-filled  LSTs  and  radiation  variables  are  

the  best  model  of  its  category  (i.e.,  CLD-4  and  ALL-4).  Figure  6  shows  the  density  scatter  plots  

of  the  best  models  within e ach  category  (i.e.,  CLR-5,  CLD-4,  and A LL-4).  For  the  model  ALL-4,  

the  density s catter  plots  of  clear  sky a nd  cloudy s ky o bservations  are  also  presented  separately to   

directly  compare  with t he  results  of  CLD-4  and C LR-5 ( Figure  6 ( c-d)).  

-------- Insert  Table  4 h ere  -------- 
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For  all  sky  models,  when  the  samples  are  separated  into  clear/cloudy  conditions,  the  

estimation  of  all  sky  models  can  achieve  similar  or  even  better  accuracy  with  the  estimation  of  

the  corresponding  clear/cloudy  sky  models.  For  example,  the  statistics  of  ALL-4  for  clear  sky  

and  cloudy  sky  observations  are  similar  with  the  statistics  of  the  corresponding  clear  sky  model  

(CLR-4;  RMSE:  1.634  ℃   v.s.  1.643  ℃;  Bias:  -0.069  ℃   v.s.  -0.116  ℃;  ��:  0.967  v.s.  0.967)  and  

cloudy  sky  model  (CLD-4;  RMSE:  1.922  ℃   v.s.  1.917  ℃;  Bias:  -0.058  ℃   v.s.  -0.025  ℃;  ��:  

0.954  v.s.  0.955).  In  general,  the  all  sky  model  with  gap-filled  LSTs  and  radiation  variables  (i.e.,  

ALL-4)  shows  the  best  overall  performance  with  satisfactory  accuracy  and  the  capability  of  

overcoming  cloud  contamination  issue.  Therefore,  we  only  evaluate  the  ALL-4  model  in  the  

remaining  part  of  this  study.  

-------- Insert  Figure  6 h ere  -------- 

4.2 I ndependent  validation  with  ITP  station  data  

To f urther  validate  the  all  sky  model  independently,  the  data  of  10  ITP  stations  of  varying  

time  periods  were  used  in  this  study.  Out  of  these  10  stations,  three  of  them  are  located  at  

elevation  higher  than  5,000  ASL.  Figure  7  presents  the  validation  results  using  these  ITP  station  

data.  The  estimated  daily  average  SAT  show  good  agreement  with t he  station m easurements  with  

nearly  zero  bias.  However,  the  RMSE  is  slightly  larger  than  the  ones  of  model  training  and  

validation  results  using  the  CMA  station  data  (RMSE:  2.18°C  v.s.  1.84°C).  Furthermore,  the  

accuracy  of  estimated  SAT  for  stations  with  elevation  higher  than  5,000  meters  ASL  is  slightly  

worse  than  other  ITP  stations  (RMSE:  2.29°C  v.s.  2.05°C).  This  result  is  possible  considering  

that  the  training  data  do  not  contain  any  stations  above  5,000  meters  ASL.  This  lack  of  
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416 representation  could  increase  the  uncertainty  of  the  estimated  SATs  over  high  elevation  regions  

(Zhang  et  al.,  2016).  

---------- Insert  Figure  7 h ere  ---------- 

4.3 M odel  sensitivity a nalysis  

Figure  8  shows  the  RMSE  and  R2  of  the  final  LOSO  result  of  each  individual  CMA  

stations  during  the  model  training  process.  In  general,  the  final  Cubist  model  performs  well  for  

most  stations  with  RMSE  lower  than  2  °C  and  R2  higher  than  0.95  (Figure  8  (a,  d)).  However,  

there  are  some  stations  with  relatively  large  uncertainty.  These  stations  appear  to  be  located  at  

the  regions  with  relatively  complex  terrain.  Figure  8(b)  shows  that  stations  above  4,000  meters  

ASL  may  show  larger  RMSE  during  this  LOSO  analysis.  However,  Figure  8(c)  demonstrates  

that  the  Cubist  model  estimation  of  nearly  80%  of  the  CMA  stations  has  RMSE  less  than  2.1°C.  

This  result  shows  comparable  or  slightly  better  performance  than  previous  studies’  clear  sky  only  

models.  Overall,  the  LOSO  result  suggests  that  the  Cubist  model  trained  with  limited  amount  of  

station  data  may  be  applied  to  other  regions  of  the  Plateau  with  acceptable  accuracy  for  all  sky  

conditions.  During  the  LOSO  analysis,  the  results  of  CMA  stations  located  at  complex  terrain  

show  relatively  large  RMSE  (Figure  8a).  This  is  likely  caused  by  the  spatial  scale  difference  

between s atellite  data  (0.05°×0.05°)  and s tation p oint  measurements.  The  microclimate  regime  of  

complex  terrain  could  increase  the  difference  between  station  SAT  (point  measurement)  and  

estimated  SAT  (area  average  estimation).  

---------- Insert  Figure  8 h ere  ---------- 

 Similar  with  the  LOSO  analysis,  the  25-fold  cross  validation  experiment  was  also  

designed  to  show  the  robustness  of  the  proposed  Cubist  model.  Figure  9  exhibits  the  RMSE  of  
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438 all  25  models  trained  with  slightly  different  set  of  training  data.  In  general,  most  models  in  the  

25-fold c ross  validation  experiment  has  low  RMSE  (1.6°C  –  2.2°C).  However,  some  models  (i.e.,  

model  No.  2,  9,  19)  show  relatively  large  RMSEs  (>2.5°C).  The  potential  cause  of  the  poor  

performance  for  these  models  is  described i n t he  discussion s ection.  

---------- Insert  Figure  9 h ere  ---------- 

439 

440 

441 

442 

443 5.  Cross  comparison  with  reanalysis/forcing  data  

444 In  addition  to  evaluate  the  proposed  model  with  station  measurements,  we  also  compared  

the  Cubist  estimation  of  the  TP  with  three  reanalysis/meteorological  forcing  datasets  listed  in  

Table  1(a).   Figure  10  compares  the  spatial  pattern  of  the  monthly  mean  SAT  of  our  Cubist  

model  estimation  (Figure  10  (a-d))  with  GLDAS  (Figure  10  (e-h)),  CLDAS  (Figure  10  (i-l)),  and  

CMFD  (Figure  10  (m-p))  for  January,  April,  July,  and  October  2014.  Overall,  all  four  datasets  

show  very  similar  spatial  and te mporal  SAT  gradients  across  the  entire  TP.  Generally,  the  SAT  is  

higher  at  the  regions  with  low  altitudes  (i.e.,  the  northern  and  southeast  parts  of  the  TP)  while  the  

high  elevation  regions  (e.g.,  the  western  and  central  areas  of  the  TP)  have  lower  temperature.  

Additionally,  all  datasets  show  the  same  seasonal  SAT  dynamics.   

Despite  the  consistency,  there  are  still  notable  differences  among  these  datasets.  Even  

though  GLDAS  may  capture  the  overall  spatial  pattern  of  the  SAT,  it  does  not  have  the  same  

level  of  spatial  details  as  the  Cubist  estimation  because  GLDAS’s  resolution  is  very  coarse  (0.25°  

v.s.  0.05°).  The  lack  of  the  spatial  details  can  be  troublesome  because  parts  of  the  TP  have  very  

complex  terrain.  It  is  not  suitable  to  use  such  coarse  resolution  to  represent  the  climate  and  

ecosystem  processes  of  those  regions.  Additionally,  the  CLDAS  SAT  appears  to  have  larger  

spatial  gradients  ,  especially  for  April  and J uly  2014.  
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Considering  all  these  datasets  have  their  own  uncertainties,  we  use  validation  years’  

CMA  station  measurements  as  a  reference  to  compare  the  accuracy  of  these  four  datasets.  Both  

CMFD  and  GLDAS  show  substantial  underestimation  (Bias:  -2.47°C  v.s.  -3.11°C)  when  

compared  to  the  reference  CMA  station  data.  The  CLDAS  data  notably  overestimates  the  surface  

temperature  with  a  bias  of  1.07°C  while  the  Cubist  model  estimation  shows  nearly  zero  bias  (-

0.07°C).  Furthermore,  the  Cubist  model  estimation  shows  smaller  uncertainty  than  other  three  

datasets  (RMSE:  1.84°C  (Cubist)  v.s.  4.82°C  (GLDAS)  v.s.  4.20  (CMFD)  v.s.  3.31°C  (CLDAS)).  

In  summary,  the  Cubist  model  estimated  SAT  of  the  TP  has  better  accuracy  than  existing  

reanalysis  and  forcing  datasets  and  can  capture  the  SAT’s  spatial  and  temporal  dynamics  of  the  

TP.  

-------- Insert  Figure  10 h ere  -------- 
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471 6.  Discussions  

472 Overall,  in  the  proposed  all  sky  Cubist  model,  four  MODIS  LSTs  are  used  to  capture  the  

spatial  pattern  and  diurnal  cycle  of  surface  temperature  while  radiation  variables  are  useful  to  

characterize  the  energy  exchange  which  may  regulate  the  difference  between  LST  and  SAT.  

Additionally,  the  radiation  variables  can  also  be  good  indicators  of  the  presence  of  cloud  since  

their  values  may  be  affected  by  cloud  coverage.  Therefore,  the  Cubist  model  may  create  rules  

based  on  these  radiation  variables  to  automatically  separate  data  into  different  subsets  with  

corresponding  models.  This  may  be  one  of  the  reasons  that  the  all  sky  model  can  get  similar  or  

even  better  results  than  separate  clear/cloudy  sky  models.  By  introducing  the  radiation  variables  

into  the  Cubist  model,  our  proposed  all  sky  model  can  estimate  daily  average  SAT  of  the  entire  

TP  for  all  sky  conditions  with s atisfactory  accuracy.   
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482 In  the  Cubist  model,  we  used  the  temporally  gap-filled  MODIS  LSTs,  within  an  11-day  

moving  window,  to  replace  the  missing  value  of  LSTs  caused  by  cloud.  This  process   improved  

the  data  availability  by  more  than  three  times  (see  Table  3  &  4).  However,  the  impact  of  the  

temporal  window  size  on  the  performance  of  the  Cubist  model  estimation  needs  to  be  examined.  

Table  5  presents  the  model  performance  and  the  data  availability  for  both  model  training  and  

validation  against  different  window  sizes  (ranging  from  0  to  ±5  days).  The  model  inputs  are  

fixed  as  LSTs,  radiation  variables,  geolocations,  elevations,  day o f  year  (i.e.,  ALL-4).  The  model  

using te mporal  window  size  of  0  day i s  equivalent  to  the  clear  sky  model  CLR-4.  The  increasing  

temporal  window  size  significantly  increases  the  data  availability,  while  the  RMSE  only  

increases  slightly  (~0.2°C)  with  the  increasing  moving  window  size.  The  temporal  moving  

window  of  ±5  days  yields  almost  100%  data  availability  for  these  CMA  stations  with  the  

satisfactory  accuracy  and  precision,  which  notably  outperforms  existing  forcing  data.  However,  

we  are  aware  that  this  sensitivity  test  was  only  conducted  for  the  limited  regions  with  CMA  

stations.  The  results  may  not  be  the  same  for  the  entire  TP.  It  is  very  challenging  to  repeat  the  

same  analysis  for  the  entire  TP  because  there  are  no  true  SAT  data  of  the  entire  TP  to  help  us  

understand  the  impact  of  the  moving w indow  size  on  the  performance  of  our  model.  In  the  future,  

this  moving  window  process  can  be  replaced  with  other  more  advanced  spatio-temporal  

interpolation  methods  or  substituted  with  microwave  based  all  sky  LST  products  to  provide  the  

better  first  guess  of  LSTs  for  cloudy  sky  conditions  (e.g.,  Wang  et  al.,  2019;  Zhang  et  al.,  2019;  

Zhou e t  al.,  2017).  

In  addition,  we  define  clear  sky  condition  very  conservatively  –  all  four  instantaneous  

MODIS  LST  and  daily s atellite  radiation  data  need  to  be  cloud  free.  This  is  because  the  purpose  

of  this  study  is  to  estimate  daily  average  SAT.  This  may  lead  to  larger  variations  of  the  model  
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performance  for  cloudy  sky  conditions.  As  concluded  by  Zhang  et  al.  (2016),  the  number  of  

high-quality  cloud  free  instantaneous  MODIS  LST  within  one  day  can  have  notable  impact  on  

the  final  model  uncertainty.  

-------- Insert  Table  5 h ere  -------- 

During  the  25-fold  cross  validation,  some  Cubist  models  trained u sing a   random s ubset  of  

the  CMA  station d ata  show  large  uncertainty  when  they  were  applied t o i ndependent  station d ata.  

To  better  understand  potential  error  sources,  we  examined  four  Cubist  models  with  largest  

RMSEs  in  the  25-fold  cross  validation  experiment  (i.e.,  model  2,  9,  19,  25).  Figure  11  presents  

the  density  scatter  plots  of  validation  results,  the  comparison  of  data  distributions  of  the  training  

and  validation  data,  and  the  quantile-quantile  (Q-Q)  plots  between  the  training  and  validation  

datasets.  For  most  of  these  cases  (except  model  2),  the  data  distributions  of  training  and  

validation  data  are  notably  different.  For  example,  Fold-19  and  Fold-25  all  show  that  the  

distributions  of  their  validation  data  are  shifted  rightwards  from  the  distributions  of  their  training  

data;  Fold-9  exhibits  a  double-peak  distribution  of  its  validation  data  which  is  different  from  the  

near  normal  distribution  of  it  training  data.  The  Q-Q  plots  also  confirm  these  differences  among  

training/validation  data’s  distribution.  This  common  characteristic  of  these  three  cases  underpins  

the  assumption  of  machine  learning  models.  Machine  learning  models  are  designed  to  predict  

unknown  situations  by  learning  from  existing  data/observations.  The  underlying  assumption  of  

most  machine  learning  models  is  that  the  training  data  should  represent  the  overall  data  

distribution r easonably  well.  If  this  assumption is   invalid,  like  in o ur  case,  the  performance  of  the  

prediction/estimation  can  be  notably  affected.  Therefore,  it  is  very  important  to  ensure  the  

representativeness  of  the  data  during  model  training p rocess.  Nevertheless,  when  we  examine  the  

distributions  of  the  training  data  for  all  four  cases,  it  is  quite  assuring  to  see  that  they  share  
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528 almost  the  same  distribution  despite  the  difference  of  their  training  data.  This  implies  that  when  

the  amount  of  training  data  is  large  enough  the  sample  distribution  may  be  very  close  to  the  real  

data  distribution.  However,  it  is  always  the  best  practice  to  examine  and  increase,  if  possible,  the  

representativeness  of  the  training d ata  to  ensure  the  trained  machine  learning  model  is  not  biased  

from  the  beginning.   

---------- Insert  Figure  11  here  ---------- 
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534 7.  Conclusion  

535 This  study  demonstrates  that  combining  LSTs  and  radiation  variables  at  both  the  surface  

and T OA  levels  can  produce  daily a verage  SAT  data  under  all  sky c onditions  with  high  accuracy.  

With  a  reasonably  defined  temporal  moving  window  to  fill  the  gap  of  missing  LST  caused  by  

cloud  contamination,  the  all  sky  Cubist  model  can  largely  increase  the  data  availability  of  

estimated  daily  average  SAT  over  the  Tibetan  Plateau.  The  model  has  been  validated  using  

spatially  and  temporally  independent  station  data  and  cross  validation  with  nearly  zero  bias  and  

reasonable  RMSEs  (1.8-2.2  °C).  When  cross  compared  with  the  existing  reanalysis/forcing  

datasets,  the  Cubist  model  estimated  SAT  can  represent  the  spatial  and  temporal  dynamics  of  the  

surface  temperature  of  the  TP  and  retain  important  spatial  details.  When  all  datasets  were  

benchmarked  against  the  CMA  station  data,  the  Cubist  model  show  better  performance  with  no  

notable  bias  and  much  smaller  RMSEs.  However,  the  25-fold  cross-validation  practice  suggests  

that  the  representativeness  of  the  training d ataset  is  of  great  importance  to  produce  a  high-quality  

machine  learning  model  with n o b uilt-in b ias.       

With  the  all  sky  Cubist  model,  we  generated  a  0.0  ° × 0.0  °   daily  average  surface  air  

temperature  dataset  for  the  entire  Tibetan  Plateau  for  2002-2016.  The  resulting d ataset  is  of  great  
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value  to  study r ecent  climate  warming  and  corresponding  impacts  over  the  entire  Tibetan  Plateau.  

However,  as  mentioned  earlier,  the  training  data  are  only  from  the  finite  CMA  stations.  

Therefore,  users  should  be  aware  of  the  potential  larger  uncertainty  for  the  regions  of  which  the  

weather/climate  patterns  might  not  be  represented  by  the  CMA  station  data,  such  as,  the  regions  

with  very  high  elevations  (e.g.,  above  6,000  meters  ASL)  or  with c omplex  topography.  Although  

the  model  is  developed  for  the  Tibetan  Plateau,  the  framework  of  this  model  could  be  extended  

to  other  regions  since  the  underlining  mechanism  should  be  similar.  However,  when  the  

framework  is  applied  to  other  areas,  the  model  should  be  properly  retrained  using  the  data  of  the  

target  area  to e nsure  that  the  model  are  built  correctly  with r epresentative  training  data.   

Despite  the  improved  accuracy  and  data  availability  of  the  daily  average  SAT  dataset,  

there  are  still  uncertainties  require  further  investigations  to  improve  the  resulted  data.  First,  all  

input  satellite  data  have  different  level  of  uncertainties  which  can  be  propagated  into  this  

empirical-based  estimation.  Therefore,  it  will  be  beneficial  to  understand  the  sensitivity  of  the  

estimated  SAT  regarding  to  the  uncertainty  of  each  individual  input  variables.  Secondly,  due  to  

the  complex  terrain  of  the  TP,  there  are  grids  with  large  elevation  gradients.  It  can  be  very  

challenging  to  assess  the  accuracy  of  these  regions.  Although  we  have  conducted  independent  

validation  using  10  non-CMA  stations  (including  three  stations  above  5000  meters),  it  is  still  

necessary  to  use  more  independent  data  of  the  regions  with  very  high  elevations  and  complex  

topography,  if  available,  to  comprehensively  evaluate  the  quality o f  the  estimated  SAT  data.  The  

independent  evaluation  would  further  provide  better  characterization  of  the  data  quality  for  the  

Tibetan  Plateau,  which  is  essential  for  users  who  need  this  dataset.  Moreover,  there  are  growing  

demands  of  grid-level  uncertainty  assessment  to  improve  the  confidence  of  local  and  regional  

applications  using  various  climate  datasets.  Thus,  it  is  of  the  best  interest  to  provide  the  
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573 uncertainty v alue  associated  with  each  grid  for  the  estimated  SAT  data  using  advanced  statistical  

methods,  such  as,  Markov  Chain  Monte  Carlo  (MCMC),  bootstrapping  etc.  The  estimation  

uncertainty  should  account  for  both  input  data  uncertainty  and  model  uncertainty.  The  measure  

of  estimation  uncertainty  will  allow  users  to  better  understand  the  strength  and  weakness  of  the  

estimation  for  their  own  applications.  Lastly,  we  are  planning  to  extend  this  model  using  

AVHRR  data  to  generate  long  term  SAT  climate  data  records  of  the  TP  (since  1982)  to  enable  

climate  applications  for  the  last  four  decades.  
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Resolution 
Dataset Data Type Data Source Reference 

(Spatial/temporal) 

CMA Station data - / Daily NMIC -

ITP Station data - / Daily TPE Yao et al. (2012) 

CMFD Reanalysis data 0.10° / 3-hourly TPE Chen et al. (2011) 

CLDAS Reanalysis data 0.0625°/ hourly NMIC Shi et al. (2011) 

GLDAS Reanalysis data 0.25° / 3-hourly 
NASA GES 

DISC 
Rodell et al. 

(2004) 
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778 Table 1(b). The summary of the remotely sensed data used in this study. 

Variable Dataset(s) Variable 
Category 

Resolution 

(Spatial/temporal) 
Data 

Source 
References 

Elevation GMTED2010 
Geo-

location 
7. ′′ / Static USGS 

Danielson 
& Gesch 
(2011) 

Land surface 
temperature 

(LST) 

MOD11C1, 
MYD11C1 

Clear sky 
only 

0.05°/ Daily 
NASA 

LP 
DAAC 

Wan et al. 
(2015a, b) 

Incident solar 
radiation (ISR) 

GLASS05B01 All sky 0.05°/ Daily UMD 
Zhang et al. 

(2014) 

Outgoing 
longwave 

radiation (OLR) 
AVHOLR All sky 0.05°/ Daily UMD 

Zhou et al. 
(Submitted) 

Top-of-
atmosphere 

albedo 
AVHALB All sky 0.05°/ Daily BNU 

Song et al. 
(2018) 

(TOAALB) 

Land surface 
albedo 

(SFCALB) 
MCD43C1 

Clear sky 
only 

0.05°/ Daily 
NASA 

LP 
DAAC 

Schaaf & 
Wang 
(2015) 

Normalized 
Difference 

Vegetation Index 
(NDVI) 

MOD13C1, 
MYD13C1 

Clear sky 
only 

0.05°/ 16-day 
NASA 

LP 
DAAC 

Didan 
(2015a, b) 

Normalized 
Difference Snow 

Index (NDSI) 

MOD10C1, 
MYD10C1 

Clear sky 
only 

0.05°/ Daily NSIDC 
Hall & 
Riggs 

(2015a, b) 
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779 Table 2. The summary of variables used in different cubist models. 

Model Geolocation Radiation Surface # Day of Year LST Type & Elevation Variables Variables 

0 Yes Yes Yes - -

1 Yes Yes - Yes -

Clear 
Sky 

(CLR) 

2 

3 

Yes 

Yes 

Yes 

Yes 

Yes 

-

-

Yes 

Yes 

Yes 

4 Yes Yes Yes Yes -

5 Yes Yes Yes Yes Yes 

Cloudy 
Sky 

(CLD) 

0 

1 

4 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Gap-filled 

-

Gap-filled 

-

Yes 

Yes 

-

-

-

All Sky 
(ALL) 

0 

1 

4 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Gap-filled 

-

Gap-filled 

-

Yes 

Yes 

-

-

-

39 



  Model Type Model  
Number  

 Bias  
(℃) 

 RMSE  
(℃)  

R2   Data Count  

 0  -0.134  1.373  0.978  102,457 

 1 -0.027   1.937 0.955  102,457  

  Clear Sky 2  -0.133  1.344  0.979   102,457 
 Model (CLR)   3  -0.039  1.864  0.958  102,457 

 4  -0.111  1.291  0.980  102,457 

 5  -0.108  1.265  0.981  102,457 

  Cloudy Sky 
  Model (CLD) 

 0 

 1 

 -0.091 

 -0.018 

 1.618 

 2.058 

 0.969 

 0.949 

 268,938 

 268,938 

 4  -0.096  1.484  0.974  268,938 

 0  -0.104  1.549  0.972  371,395 
  All Sky 
  Model (ALL)  1  -0.021  2.048  0.951  371,395 

 4  -0.106  1.434  0.976  371,395 

 

 

 
 

 

 781 

780 Table  3.  The  comparison  of  cubist  model  training  statistics  for  different  models  listed in T  able  2.  

40 



  Model Type  Model 
Number  

 Data Type   Bias  
(℃) 

 RMSE 
(℃)  

R2   Data Count  

 0 -  -0.141  1.638  0.967  40,528 

 1 -  -0.085  2.373  0.931  40,528 

  Clear Sky 2  - -0.144   1.637 0.967   40,528 
 Model (CLR)  3  - -0.096   2.372 0.932   40,528 

4  - -0.116   1.643 0.967   40,528 

 5 -  -0.113  1.631  0.967  40,528 

  Cloudy Sky 
  Model (CLD) 

 0 

 1 

 -

 -

 -0.027 

 0.021 

 1.983 

 2.489 

 0.951 

 0.924 

 109,713 

 109,713 

 4  -  -0.025  1.917  0.955  109,713 

 All  -0.067  1.884  0.957  150,241 

 0  Clear  0.028  1.647  0.967  40,528 

 Cloudy  -0.106  1.986  0.952  109,713 

  All Sky 
 Model (ALL)  

 1 

 All 

 Clear 

 -0.024 

 0.097 

 2.460 

 2.362 

 0.927 

 0.932 

 150,241 

 40,528 

 Cloudy  -0.080  2.496  0.924  109,713 

 All  -0.059  1.837  0.959  150,241 

 4 Clear   -0.069  1.634  0.967  40,528 

 Cloudy  -0.058  1.922 0.954  109,713  
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782 Table  4.  The  comparison  of  statistics  for  validation r esults  for  different  cubist  models  listed i n  

Table  2.  In th is  table,  the  validation f or  all  sky  models  is  further  separated f or  clear  sky  and  

cloudy  sky  data.  
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Window  
 Size 

 Training Samples   Validation Samples  

 Data  Bias 
 RMSE (℃)   Availability (℃)  

 Data  Bias 
 RMSE (℃)  Availability (℃)  

  0 day  27.55%  -0.108  1.265  26.88%  -0.113  1.631 

 ±1 days   78.13%  -0.089  1.387  77.04%  -0.096  1.759 

 ±2 days   87.64%  -0.102  1.401  86.41%  -0.024  1.734 

 ±3 days   95.62%  -0.091  1.395  94.40%  -0.067  1.801 

 ±4 days   97.48%  -0.104  1.423  96.38%  -0.027  1.782 

 ±   days   99.87%  -0.106  1.434  99.65%  -0.059  1.837 

  789 

786 Table  5.  The  statistics  of  all-sky  Cubist  model  training/validation u sing  different  window  size  

for  temporal  gap-filling  for  MODIS  LSTs.  The  model  with t he  window  size  of  0 d ay  is  the  full  

clear-sky  model  (i.e.,  CLR-5 in T  able  2).   
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List of figures 

Figure 1. (a) The elevation map of the Tibetan Plateau and the location of the China 

Meteorological Administration (CMA) stations (black triangles) and the Institute of Tibetan 

Plateau Research (ITP) stations (red pentagram) within the Tibetan Plateau; (b) the elevation 

distributions of the CMA stations (blue line) and the GMTED DEM for the entire TP (red line). 

Figure 2. The overall flowchart of the model training and evaluation strategies of this study. 

Figure 3. The schematic of the non-committee Cubist regression model. 

Figure 4. The structure of the rule based Cubist regression model with committees. 

Figure 5. The density scatter plots of all 12 Cubist models listed in Table 2 for training results: 

(a) CLR-0, (b) CLR-1, (c) CLR-2, (d) CLR-3, (e) CLR-4, (f) CLR-5, (g) CLD-0, (h) CLD-1, (i) 

CLD4, (j) ALL-0, (k) ALL-1, (l)ALL-4. 

Figure 6. The density scatter plots of the validation results for the best model in each category (a) 

CLR-5, (b) CLD-4, (c) clear sky observations of ALL-4, (d) cloudy sky observations of ALL-4, 

and (e) all sky observations of ALL-4. 

Figure 7. The density scatter plot of the independent validation for the final Cubist model using 

data of 10 Institute of Tibetan Plateau Research (ITP) stations. 

Figure 8. The results of the leave-one-station-out (LOSO) experiment: (a) the spatial distribution 

of the RMSE of all CMA stations; (b) the scatter plot between the RMSE and the elevation of all 

CMA stations; (c) the histogram of the RMSE of all CMA stations, where the solid blue vertical 

line indicates the median value and the two dashed vertical lines refer to the 25% and 75% 

quantiles respectively; (d) the spatial distribution of the R2 of all CMA stations. The background 

colors of (a) and (d) are the elevation of the GMTED2010 data. 
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Figure 9. The RMSE of the 25-fold cross validation experiment using all CMA station data. 

Figure 10. The spatial and temporal patterns of (a-d) the Cubist model estimated surface air 

temperature (SAT), (e-h) the GLDAS SAT, (i-l) the CLDAS SAT, and (m-p) the CMFD SAT 

data of January, April, July and October 2014. 

Figure 11. First column (a, d, g, j): the density scatter plots of four Cubist models with largest 

RMSEs in Figure 9 (i.e., No. 2, 9, 19, 25); second column (b, e, h, k): the comparisons of the 

data distributions of SATs from the training and validation datasets of each model; third column 

(c, f, i, l): the quantile-quantile (Q-Q) plots of SATs between the training and validation datasets 

of each model. 
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A Cubist model is developed to estimate daily average SAT for all-sky conditions; 

TOA radiation products improve the accuracy of estimated temperature; 

A 0.05° × 0.05° daily temperature data (2002-2016) is created over the Tibetan Plateau; 
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